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ABSTRACT

With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is in-
corporated into the UCLA model. In this scheme, the linearized terms in the governing equations that
generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal
time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time
step dictated by the CFL condition for low-frequency waves. This large time step requires a special modi-
fication of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS -

is a stable, efficient and accurate scheme.

1. Introduction

In an explicit time integration of primitive equa-
tions, the time step is limited by the Courant-Fried-
richs-Lewy (CFL) condition (Courant et al., 1928).
This limit is inversely related to the fastest phase
speed in the model, which is the speed of the external
gravity wave. Therefore, the explicit integration is
rather slow. Since meteorologically significant waves
have speeds much slower than that of the external
gravity wave and possess practically all of the energy
of the atmospheric motion, the use of the explicit
scheme is uneconomical. Two major approaches
have been taken to circumvent this difficulty. In the
first approach, the linearized terms of the primitive
equations that govern the gravity waves are integrated
implicitly, and the remaining terms are integrated
explicitly, with a time step dictated by the CFL con-
dition for slow moving waves. Known as the semi-
implicit scheme (SIS), it has been used both in grid
point models (Kwizak and Robert, 1971) and in spec-
tral models (Robert, 1969), with significant savings
in computing time and acceptable accuracy (Robert
et al., 1972). However, since the speed of the gravity
waves is reduced in the implicit integration, its ac-

curacy is questionable in the regions of gravity wave -

excitation (Messinger and Arakawa, 1976), where
correct simulation of the geostrophic adjustment pro-
cess depends upon the correct treatment of gravity
waves.

'
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The second approach to expedite the integration
involves separating the terms related to the gravity
waves from the rest of the equations. One group of
terms is first integrated with an optimal time step,
either explicitly or implicitly, and the result of this
step is used at the beginning of the marching for the
other group, employing a different optimal time step.
This is called the splitting method (Marchuk, 1974;
Gadd, 1978). When explicit schemes are used, the
splitting method does not have the adverse effect of
retarding the gravity waves. However, since the dif-
ferent dynamic processes are calculated one at a time,
the truncation errors of all steps are multiplied rather
than added.

In a study which combined these two approaches,
Burridge (1975) further separated the linearized terms
governing gravity waves into different vertical modes.
In this scheme, modes with phase speeds greater than
those of the meteorological waves (usually the exter-
nal gravity wave and the first two or three internal
gravity waves) are integrated implicitly. The other
terms are integrated explicitly as a second group. This
method is known as split semi-implicit scheme (SSIS).

In a recent work, Madala (1981) proposed an ex-
plicit-multiple-time-step scheme? (EMTSS), which
combines many of the advantages of the previously
mentioned methods. In EMTSS, linearized terms in
the primitive equation governing gravity waves are
decomposed into different vertical modes. Modes
with phase speeds greater than the meteorological

2 The name comes from a reviewer’s suggestion. Madala used
the name “split-explicit;”” which was already used by other authors
for a different scheme (e.g., Gadd, 1978).



1604

waves are integrated explicitly and separately, with
time steps allowed by the respective CFL conditions,
and are recombined at periodic intervals. The other
modes and the remaining terms are then integrated
explicitly with a time step determined by the speed
of the slow moving waves, which is usually five times
as large as the time step allowed for the fastest moving
waves. The basic procedure of this scheme is given
in the next section.

Thus far, the EMTSS has been successfully applied
to a tropical cyclone model (Madala, 1981). The
speed of integration was increased by a factor of three
over that using the explicit method and was slightly
higher than that of the SIS. The results also showed
almost the same accuracy as SIS and SSIS. The pres-
ent paper presents a further investigation of the
EMTSS to ascertain whether it also works in a global
model, in which more complexities exist, such as high
terrain and the diminishing zonal grid size toward the
poles. The model chosen for this effort is-the 1977
version of the UCLA model (Arakawa and Lamb,
1977; hereafter referred to as AL).

2. The basic procedure of EMTSS

The basic procedure of EMTSS can easily be il-
lustrated starting with a one dimensional shallow
water model. The governing equations for such a
model on an f-plane are ‘

, ou bd)_

o Tax A
a¢ ou
Z+d—=4
EY; x

where u is the velocity, ¢ and & are the perturbed
and mean geopotentials respectively. 4, and A, rep-
resent the nonlinear [including ($ — ¢)du/dx] terms
(in a full model, 4’s would include a Coriolis force
term). Physics terms are not involved in EMTSS for-
mulation. The linearized gravity wave terms (d¢/0x
and $9du/ox) and the A’s will be treated differently
in EMTSS. Let Af, be the CFL time step limit
based on the speed of the gravity waves. That is,
At, = eAx/(g®)'?, where Ax is the horizontal grid
size and e is a constant depending on the time scheme
used (e = 1 for leapfrog scheme). Also, let At be the
CFL time step limit for the system when d¢/dx and
®du/dx terms are excluded. Normally, At is greater
than Af,.

If the leapfrog scheme is used, let us assume that
the values of u and ¢ are known at ¢, and £, (1, = ¢,
+ Ar). The way to obtain values at £, when ¢, is the
initial time will be considered shortly. Let A7 be an
integral fraction of Az, Ar = At/n, where n is the
smallest integer such that A7 < Af,. Then, the first
stage of EMTSS is to replace the 4’s by their values
evaluated at £,. The second stage is to march explicitly
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the replaced equations (i.e., with fixed 4’s) from ¢,
to t; (#3 = t; + 2A¢) using time step A7. Here, the first
step marching can be done with a Matsuno scheme,
and the remaining steps with a leapfrog scheme. A
byproduct of the second stage will be a new set of u
and ¢ at t,. They are not retained for later use. Once
uand ¢ at t; are obtained, the two stages are repeated.
A’s at t; will be evaluated and will replace the 4’s in
the equations. Then the explicit marching from ¢, to
t, with time step Ar starts.

To obtain values of u# and ¢ at 7, when ¢, is the
initial time, a two-level scheme has to be invoked, for
example, the Matsuno scheme:. In the first part of the
Matsuno scheme, the A4’s in the equations are re-
placed by their values evaluated at ¢,. The equations
are marched to r*, a temporary ¢,. The second part
of the Matsuno scheme is to march the equations
again from ¢, to ¢, but this time the A’s are replaced
by their values evaluated at 7*.

In EMTSS, the linearized gravity wave terms and
the A’s are integrated explicitly with time steps less
than their respective CFL limits. Therefore, the linear
stability of the scheme is obvious. The efficiency of
the scheme derives from not having to evaluate A4’s,
which includes complicated computation of the non-
linear terms, at every Ar interval. The EMTSS treats
A’s the same way as the SIS does. The linearized grav-
ity wave terms are treated explicitly with time step
Ar, rather than implicitly with time step At as in the
SIS. Thus, the accuracy of the EMTSS is expected to
be better than that of the SIS.

When the above procedure is followed in a K level
primitive equation model, the number of equations
that have to be marched in the second stage is
3K + 1, (2K momentum equations, K temperature
equations and a surface pressure equation). This
number can be greatly reduced by adopting the modal
decomposition method (Burridge, 1975), and march-
ing different modes separately with different optimal
Ar. Thus, the efficiency is further improved. Also the
two stages can be cast in a slightly different, though
equivalent, version. Details of these approaches will
be presented in the next section.

3. Formulation of EMTSS for a primitive equation
global grid model

a. Basic equations

The vertical coordinate in the UCLA model is
o =(p — pp/=, (1

where p is pressure, pr is a constant pressure at the
model top (currently pr = 50 mb), = = p; — pr, and
D, is the pressure at the surface. Because there is only
one layer in the stratosphere, the original definition
of ¢ in the stratosphere (AL, p. 207) is not used for
reasons of simplicity. All notations follow those of
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AL, unless otherwise indicated. The symbols { )
and [ ] indicate column vector and matrix respec-
tively.
) The zonal momentum equation in the flux form
is

1 4 ) i

— + —_—

cos’¢ dy (muv cos'$) do

d d 2
Py (wu) + o (7u*) +

X (wuo) — wfv = —w(g-z)a - (waa)(%)u + wF,,

2)
where u is the zonal velocity, v the meridional ve-
locity, a the specific volume, f the Coriolis parameter,
¢ the latitude and geopotential (the distinction is ob-
vious), A the longitude, a the earth’s radius, F, the
zonal frictional force, ¢ = do/dt, dx = a cospd\, and
dy = ade.

Since ¢ = ¢, + ¢,, where ¢, is the surface value
of ¢, and ¢, is ¢ — ¢, the pressure gradient force
term in (2) can be written as

a —_—
= 32 190 + {($a — oma) + (¢, ~ oma}

% 9 0
AP

dx dx P>
where the double overbar denotes the time and global
horizontal average on a s-surface, and the prime de-
notes the deviation from it. If

¢ =7¢, — (s — owa),

(2) becomes

0 o ——-

3 (mu) + i $® =R,, 3)
where R, denotes all remaining terms, which vary
slowly in time compared with the linear gravity wave
terms. The additional smoothing operator, denoted
by the dashed overbar, suppresses the amplitude of
the short waves to overcome the problem associated
with diminishing zonal grid size toward the poles.
This operator is fully described in AL (p. 248) and
is applied to the zonal pressure gradient term and to
the zonal mass flux term. In a similar manner, the
meridional momentum equation can be written as

@)
Next, the continuity equation can be integrated

vertically to give :
9

5™+ (D) =0,

d d
Z(v)+—®=R,.
at(ﬂ'v) a R

&)

where

0 ——-— 1 d
D=V (zxv)= a( Tu )+ cosé 3y (wv cos¢p)
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[AL, Eq. (166)]. The row vector (N,)” is given in the
Appendix.
The thermodynamic equation (AL, p. 209) is

%(«T» + V(v T

1

{(W&)k+1/2Pkék+ll2 - (W&)k—l/szék—n/z}
AO’k

+

1 i) T
_ 2 = . — , (6
c (”“)"(az + Vi V)W + o O, (6)

where the subscripts are level indices; 6 is the potential
temperature; P = T/6 = (p/1000); and C, specific
heat at constant pressure. Integration of the conti-
nuity equation gives (wo) = [N,]{D), where [N;] is
given in the Appendix. Thus, (6) can be written as

ba? («T) + ToDy + 1 (o) N2)(D)
Cp

+ (M (D)) = Ry, ,
or as

d

o (1(T) + [MKD) = (Ry), (7)
where [M4](D) denotes the linear portion of the terms
involving ¢, and R denotes the heating and all non-
linear terms. The matrices [M,] and [M,] are given’
in the Appendix. Instead of m, 7 is used in computing
[M,]. The difference created in this procedure be-
comes part of Ry.

Egs. (3), (4), (5), (6) and the hydrostatic equation
form the complete set of governing equations in the
model. When R, = R, = Ry = 0, these equations
govern the linear gravity waves in an undisturbed
atmosphere.

b. The Explicit-Multiple-Time-Step Scheme

In the UCLA model, ¢, is related to the temper-
ature in a nonlinear fashion [AL, Egs. (207), (208)].
This fact will be denoted by a subscript N, thus (¢,)y.
However, one important requirement in the EMTSS
is that ¢, must be linearly related to temperature, to
make the modal decomposition (described later) pos-
sible. This requirement is met by a previous definition
of ¢, in the UCLA model (Arakawa, 1972; and the
Appendix of this paper), and this will be denoted by
a subscript L, thus (¢,),.. Thus, the hydrostatic equa-
tion has the form: (¢, = [M;(T), where [M,] is
given in the Appendix. The matrix [M,] is a function
of =, when prin Eq. (1) is not equal to zero; therefore,
it is a function of the horizontal coordinates. To make
the modal decomposition possible, [M;] computed
with 7 will be used for all locations. In so doing, the
definition of {¢.), is modified.

Following the incorporation of the foregoing ar-
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guments, (3) should be rewritten as

d 0 -

Py (mu) + 3 v = R 8)
When the standard leapfrog scheme is employed, (8)
becomes

(mu 1—A1+2A7 __ (7ru)‘:'“ + 2A7 ;% ('&f')Nx-Aﬁm

= ZATRMI—AHA-r’ (9)

where At is a time interval allowed by the CFL limit,
based on the speed of meteorological waves, and
At = At/n, where n is the smallest integer (usually
5) such that A7 is less than the CFL limit, based on
the fastest gravity waves. Marching (9) with 2A7 in-
tervals between ¢ — Af and ¢ + At and summing up
the results gives

0 —=-
(wu)‘*A’ _ (wu)"A’ + ZAZ 5;( P )N2At

= 2AtR 2 ~ 2AtR), (10)

where ( ~ ) is the arithmetic averaging over the 2A¢
interval. With regard to the stability of the scheme,
the approximation of R,*» by R, is allowed, since
R, does not create a high frequency variation in 7u.
This approximation introduces a truncation error
which, ‘however, does not create linear instability.
When the term

2AL Ea_; (E,Lzm _ éNZAt . QLt)

is added to both sides, (10) becomes

()t — (wu)™ + 24t 56)—( (3&“’ - &9

o ---
= 2AtR,f — 2At53_c &y, (11)

The right side of (11) gives the change of wu over the

L L L L L L

M L L M L L

FIG. 1. Schematic representation of the time differencing scheme
of the model showing a sequence of usage of leapfrog schemes (L)
and the Matsuno schemes (M). Small time steps are not shown
because they are different for different modes.
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2At interval in one leapfrog step. Therefore, (11) be-
comes

= (mu)* — (ru)™%, (12)
where the subscript E denotes the results from march-
ing once with the 2A¢ interval without the help of the
EMTSS scheme. Thus, (zu)*4’ can be found by
marching (8) over 2A¢ with time step At only once,
if ®,%4 is known.

Similarly, the other prognostic equations are
5 . .
(@v)* — (rv) Y + 2At 5 (9,24 ~ &%)

— (WU)EH_A‘ — (ﬂ,v)t—At,

(13)
(AT — (a Ty~ + 28(M KD — DYy
= (aTYg*™ = (aTY%, (14)

L N At<N2>T<l”)2At — Dt>

- ,“,EH—AI —_A (15)

Since the aim now js to obtain the two sets of un-
knowns, ($)** and (D)?*, the four sets of equations
can be reduced to two sets. Forming [M,] (14)
+ {oma — ¢y (15) gives

<‘I’L>’+A' — (B )N + 2A1[M;] <]")2A: -9
_ <¢L>EI+AI _ <QL>I—AI, (16)

where [M3] = [Ml][le + <a7ra - ¢L><N2>T. The gﬂd
scheme C (AL, p. 182) used in the UCLA model is
not changed.

In order to form the divergence equation from (12)
and (13), it is convenient to define « at the u(v) points
as the average of the two neighboring #’s in the zonal
(meridional) direction. However, it should be em-
phasized that the original definition of = at the » and
v points (AL, p. 242) are still used in computing 1%
and vt

Egs. (12) and (13) give the divergence equation

<D>I+At _ <D>I—At + ZAtv2<$L2AI - Qﬁ)

— <D>EI+AI — <D>t—.Al, (17)
where
@ 1 8 ( a)
2.9 9 9
v ax? + cos¢ 9y cose ayl

Note that the dashed overbar operator is used twice.
The basic EMTSS is to use (16) and (17) in the Ar
interval, where they are written as
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FiG. 2a. Initial sea level pressure (mb), Northern Hemisphere.

(BLy — (L) + 287 [M (D" — DY)
At
= (_A_t)(<‘I>L>Et+At _ <(I)L>t—At)’ (18)
<D>1+A-r _ <D>1—A-r + 2ATV2<¢L7 _ q,Lt>

A
= (-—A—:)(<D>EI+AI —_ <D>t—At)’ (19)

and to march these two equations with fixed right
sides with time step A7 between ¢ — At and ¢ + At
(a Matsuno scheme has to be used in the first march-

ing step). The two unknowns, (®)*** and (D)**, can
be obtained by taking arithmetic average of the results
of the marching.

Thus far, the number of equations that are required
to be marched with a Ar time step has been reduced
from 3K + 1 to 2K, where K is the number of vertical
levels in the model. A further reduction can be
achieved by adopting a modal decomposition method
(Burridge, 1975). Egs. (18) and (19) can be decom-
posed into independent modes by multiplication with
the inverse of the matrix [E], whose columns are the
eigenvectors of [M;]. The results of the multiplication,
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FIG. 2b. As in (a), but for the Southern Hemisphere.

which govern the different gravity modes, are
(<§LE>7+A1 — <§LE>1)
— ((BEY % — (®,F)) + 2A7[AKDF" — DE'>

(A
= (X:)[E]—l(<§L>Et+At — <¢L>I—At), (20)

(<DE>1+A1 _ <DE>')
— (DEY 4 — (DEY) + 2A7VH( @, 5 — &,5)

At
= (E)[E]—l(<D>Et+At _ <D>t-—At), (21)

where [A] is equal to [E]"'[Ms][E], a diagonal matrix
whose diagonal elements are the eigenvalues of [Ms]
(i.e., the square of the phase speeds of the gravity
wave modes in an undisturbed atmosphere), and
(x)E = [E]"(x). .

Egs. (20) and (21) are marched in the 2A¢ interval
with different Ar for each mode, as determined by
the CFL condition based on the phase speed of that
mode. The right sides of (20) and (21) are, of course,
held constant in this marching. The quantities
(DF* — DE') and (&, — &,F") are obtained from
arithmetically averaging the results of this marching.
Only modes with phase speeds greater than the max-
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FIG. 2¢c. 72 h sea level pressure (mb), Northern Hemisphere, no EMTSS.

imum speed of the meteorological waves have to be
marched in this manner. Other modes assume zero
values for (D™ — D%') and (&, — ®,*'). Finally
(E] is multiplied with (DF* — D) and (&,
~ &,F) to obtain (D?* — D) and (2~ — &,"),
respectively.

In summary, the procedure of the EMTSS method
is as follows:

1) Calculate the matrices, and the eigenvalues and
eigenvectors of [M;], using the predetermined global
mean quantities. This step is done only once.

2) Compute ((®.5) % — (®,F) and (D*)Y~*
— (D).

. (<&)L>2At _ <¢L>z) and (<D>2Al —

3) Use the larger time interval A¢, march forward
one step and compute the right-hand sides of (20)
and (21).

4) March (20) and (21) with different A7, for dif-
ferent modes. For the six-level UCLA model (AL, p.
176), only the first three modes need to be integrated
with Ar = (1/5, 1/3, 1/2)At. ,

5) Average the result from step (4) to obtain
(D)") which then
allows the calculation of the predicted quantities at
t + At in (12) through (15). '

Although the above descriptions are based on the
leapfrog scheme, the changes are minor when using
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FIG. 2d. As in (c) but for the Southern Hemisphere, no EMTSS.

the Matsuno scheme, which is periodically used in
the UCLA model to overcome the time splitting prob-
lem associated with the leapfrog scheme (AL, p. 260).
In the first part of the Matsuno scheme, the super-
scripts ¢ + At, t — At and 2A¢ in the above equations
are changed to ¢*, t and At, respectively. Then, in the
second part of the Matsuno scheme, the superscripts
t — At and 2A¢ are changed to t* and At, respectively.
In both parts, of course, the factor 2A¢ is changed
to At.

¢. Modification of the advective terms near the poles

Even when At is increased by a factor of five, the
dashed overbar operator, described in Subsection 3a,
is sufficient to circumvent the problem of linear in-
stability related to the gravity wave terms, due to the
diminishing zonal grid spacing toward the poles.
However, the advective terms d/dx[(wu)q] where g
denotes u, v and T, can create linear instability near
the poles when At is enlarged. The time increment
allowed for the advective terms At, is limited by Az
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FIG. 2e. 72 h sea level pressure (mb), Northern Hemisphere, with EMTSS.

< eAx/(u + c,,), where ¢, is the speed of the mete-
orological waves, u is that of the basic flow, and ¢ has
a magnitude of order 1, with its exact value depending
on the time differencing scheme used. When u is large
in the polar region where Ax is small, Az cannot be
increased by a factor of five. The solution used here
is to apply the dashed overbar operator to ¢ in the
terms 9/dx{(wu)q] in (272) and (299) of AL. Thus, in
step 2 of the EMTSS procedure (Subsection 3b) the
second term in (299) is changed to

SIFC T ).

Here the notations follow those of AL, £ is the cur-
vilinear coordinate in zonal direction [(252) of AL],
6 and overbar are defined in (63) and (64) of AL.
Also, the changes in (272) are to substitute (275) into
(272) and then apply the dashed overbar operator on
u in those terms containing F*. Similar changes are
made for the v component equation. Short-term tests

(72 h) show this method is successful in controlling
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FIG. 2f. As in (e), but for Southern Hemisphere, with EMTSS.

linear instability. However, since the quadratic con-
servation properties no longer hold (they tend to in-
crease square vorticity and to decrease kinetic energy)
there can be some side effects in this approach, as will
be shown in the result section.

d. The time differencing method

As shown in Fig. 1, the time differencing method
used to calculate the dynamic terms consists of a se-
ries of the leapfrog schemes with a periodic insertion
of the Matsuno scheme. The time step is Af. The

source and sink terms, and the vertical flux conver-
gence term of the moisture equation, are calculated
as an instantaneous adjustment. For A7 = 30 min,
these calculations are done after each leapfrog or
Matsuno step. Thus, the frequency of computing the
physical processes is not changed.

e. Addition of the pressure averaging method

When the pressure averaging method (Shuman,
1971; Schoenstadt and Williams, 1976; Brown and
Campana, 1978) is used, (20) and (21) can be inte-
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FIG. 3a. Initial 500 mb geopotential (60 m interval), Northern Hemisphere.

grated with At = (1/3, 1/2, 1/1.5)At. The value of the
« parameter used here is 0.24. This method further
enhances the efficiency of the EMTSS.

4. Results and discussion

The performance of the present EMTSS formu-
lation is, of course, judged by its stability, efficiency
and accuracy. The following discussions are directed
toward these characteristics.

-a. Stability

Two 12-h runs and one 72-h run, starting from
different initial conditions, showed that the EMTSS
formulation is linearly stable. Since the linear stability
criterion depends not only on the wave speeds but
also on the wind speed, the present formulation is
best tested with a large wind speed, especially in the
polar region, where the zonal grid size is small. In
one 12-h test run, the wind speed near the north pole
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FI1G. 3b. 72 h 500 mb geopotential (60 m interval), Northern Hemisphere, no EMTSS.

reached more than 50 m s™' and no linear instability
occurred.

b. Efficiency

Tests show that when the UCLA model with six
vertical levels, A¢p = 4% AX = 5% and Ar = 30 min
(five times the original Ar) was run on a CDC 175
without physical processes, the reduction in integra-
tion CPU time by the EMTSS was 48%, of which 4%
was due to the addition of the pressure averaging

methods. The efficiency increases with greater vertical
resolution. When vertical resolution is doubled, the
time needed for ordinary explicit methods will be
doubled. However, the overhead for using EMTSS
only increases by a small fraction, since the number
of gravity wave modes integrated with small time
steps remains the same. The net reduction in CPU
time for the full model depends on the amount of the
CPU time used for the physical processes, which of
course get no help from the EMTSS. The reduction
is 24% for the full UCLA model with the previously
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F1G. 3c. 72 h 500 mb geopotential (60 m interval), Northern Hemisphere, with EMTSS.

mentioned grid size. Only when a large portion of
CPU time is used for dynamical processes does it pay
to adopt the EMTSS. This occurs when horizontal
resolution is increased by a large degree.

¢. Accuracy

Two 72-h runs with and without the EMTSS were
made, starting from the same well-balanced (in the
sense that no large gravity wave components exist)
initial conditions, which is the end of another 72-h

run. The initial conditions and the results at hour 72
are shown in Figs. 2 and 3 for sea level pressure and
500 mb geopotential height, respectively. The differ-
ence between the two runs is very small, when it is
compared with the changes over 72 hours. The rms
difference (Table 1) in 500 mb geopotential height at
hour 72 is 16 m, which is very small compared with
the typical forecast error of 75 m. Also, the rms dif-
ference in 500 mb zonal wind at hour 72 is 2.4 m s™!
compared with the typical 48 h forecast error of 8.5
m s~! (Somerville et al., 1974). Although there was
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TABLE 1. The rms differences.

rms differences

500 mb 500 mb
Surface Geopotential Zonal
pressure (mb) height (m) wind (m s7!)
24 h 1.09 8.93 1.03
48 h 1.54 12.40 1.79
1.97 15.78 2.40

72h

concern whether computing the matrices using a
globally averaged « was appropriate for high terrain
areas, no adverse effect over these regions was de-
tected. One obvious discrepancy between the two
runs is that at hour 72, a strong high centered at
(35°E, 80°S) appeared in the run using the EMTSS,
whereas only a weak high occupied this region in the
run without EMTSS. A separate 72 h run using the
EMTSS starting from the same initial conditions but
without the physical processes, also has this intense
high. Thus, it is reasonable to consider this dis-
crepancy a side effect of the modification described
in Subsection 3c.

Overall, the results are remarkably good outside
regions very close to the poles. The poor performance
near the poles, however, is not a direct consequence
of applying the EMTSS, but is related to the hori-
zontal differencing scheme, and to the diminishing
zonal grid size near the poles. Whether this problem

precludes long-term integration was not answered in

this study, due to the limitations on computing re-
sources. :
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APPENDIX

-Computation of the Matrices

In a K-level ¢ coordinate model, where ¢ = (p
— p)/(ps — pr), the row vector (N,)7 is

(No)" = (Agy, Aoy, ..., Adk).

The hydrostatic equation for ¢, (Arakawa, 1972, p.
25) is

() — (Badre+s

=C_P N K __ (5} _& Ilc+_l)
> [(Pr+1) (pk)]x(p-kx+5k+lx . [A1]
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where « = R/c,, and

(¢a)K
: R
=2 |:7=mk = Agp — (oki B + Uk—nak)]Tk , (A2)
k=1 Dr .
B {'/z[(ﬁkﬂ/ﬁk)* —1] for k<K-1
“lo for k=K,
and

{0 for k=1
a —_
“T Ul - Bio/B) for k=2

The matrix M, can be constructed from the preceding
equations, where (A1) and (A2) give ¢, (k= 1,
-+« K) as a linear function of T (k = 1, - - - K).
The element (M,), ; equals the ¢;, computed using T;
=1land T, =0 forall k #j.

AO’] 0= 0
Ad) Agy-n0
[N, = —| e
AO’] AO’z----AO’K
0" A0y 0,5 AG - o f Aok
03FAd) 0:EAG -0 F Aok
+ b

E E E
Ok+1 B0y Ogyy Aoy=-0gy | Aok

where ¢ denotes o at an interface between two layers
as shown in Fig. Al. When (o) = [N;]{D) is sub-
stituted in the thermodynamic equation, [M,] and
[M,] can easily be constructed.

The thermodynamic equation is

a%(wm + V(v

1 o0 - . -
+ Ao (7w er1/2 P12 — (0 Vi—1/2 Pibi-1/2]
k

T 0P, (a )
= kL Vi + 70U,
P, or \at ’
oE=0
w,l ay
of. &y
le L]
of &y
“ke-&k-1
wk‘ i o &y
MK{ oK

ITTITTTIT7TT77 7777777 7777777777 oxfy =1 0g=0

FIG. Al. Schematic diagram indicating the definitions of
o, o% and Ao.
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where
W%%%‘—’ C—lp(awa)k,
akﬂ/z _ Iné; — Inby,, .
(1/8ic+1) — (1/64)
Thus,

% (=T) + [TKD) + [MKD>

--(75 ) + o

Cp

where _
Ty 00
m=| 2,
0= Tx
and

M) = (Vi jPibisrp = Vier jPibi-12)/ Aoy
where V' = [N,], and
1 (awa),‘<N2>T

[M;] = [M,] + [T] + =
Cp

It should be emphasized here that all quantities in
the matrices are computed using the globally averaged
temperature and surface pressure.
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